The Stokes Phenomenon in the Confluence of the Hypergeometric Equation Using Riccati Equation
نویسندگان
چکیده
In this paper we study the confluence of two regular singular points of the hypergeometric equation into an irregular one. We study the consequence of the divergence of solutions at the irregular singular point for the unfolded system. Our study covers a full neighborhood of the origin in the confluence parameter space. In particular, we show how the divergence of solutions at the irregular singular point explains the presence of logarithmic terms in the solutions at a regular singular point of the unfolded system. For this study, we consider values of the confluence parameter taken in two sectors covering the complex plane. In each sector, we study the monodromy of a first integral of a Riccati system related to the hypergeometric equation. Then, on each sector, we include the presence of logarithmic terms into a continuous phenomenon and view a Stokes multiplier related to a 1-summable solution as the limit of an obstruction that prevents a pair of eigenvectors of the monodromy operators, one at each singular point, to coincide.
منابع مشابه
The Stokes Phenomenon and Some Applications
Multisummation provides a transparent description of Stokes matrices which is reviewed here together with some applications. Examples of moduli spaces for Stokes matrices are computed and discussed. A moduli space for a third Painlevé equation is made explicit. It is shown that the monodromy identity, relating the topological monodromy and Stokes matrices, is useful for some quantum differentia...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملA Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)
Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملOptimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations
In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007